74 research outputs found

    MicroRNA Genes and Their Target 3′-Untranslated Regions Are Infrequently Somatically Mutated in Ovarian Cancers

    Get PDF
    MicroRNAs are key regulators of gene expression and have been shown to have altered expression in a variety of cancer types, including epithelial ovarian cancer. MiRNA function is most often achieved through binding to the 3′-untranslated region of the target protein coding gene. Mutation screening using massively-parallel sequencing of 712 miRNA genes in 86 ovarian cancer cases identified only 5 mutated miRNA genes, each in a different case. One mutation was located in the mature miRNA, and three mutations were predicted to alter the secondary structure of the miRNA transcript. Screening of the 3′-untranslated region of 18 candidate cancer genes identified one mutation in each of AKT2, EGFR, ERRB2 and CTNNB1. The functional effect of these mutations is unclear, as expression data available for AKT2 and EGFR showed no increase in gene transcript. Mutations in miRNA genes and 3′-untranslated regions are thus uncommon in ovarian cancer

    Economic evaluation alongside the Speed of Increasing milk Feeds Trial (SIFT)

    Get PDF
    OBJECTIVE: To evaluate the cost-effectiveness of two rates of enteral feed advancement (18 vs 30 mL/kg/day) in very preterm and very low birth weight infants. DESIGN: Within-trial economic evaluation alongside a multicentre, two-arm parallel group, randomised controlled trial (Speed of Increasing milk Feeds Trial). SETTING: 55 UK neonatal units from May 2013 to June 2015. PATIENTS: Infants born <32 weeks' gestation or <1500 g, receiving less than 30 mL/kg/day of milk at trial enrolment. Infants with a known severe congenital anomaly, no realistic chance of survival, or unlikely to be traceable for follow-up, were ineligible. INTERVENTIONS: When clinicians were ready to start advancing feed volumes, infants were randomised to receive daily increments in feed volume of 30 mL/kg (intervention) or 18 mL/kg (control). MAIN OUTCOME MEASURE: Cost per additional survivor without moderate to severe neurodevelopmental disability at 24 months of age corrected for prematurity. RESULTS: Average costs per infant were slightly higher for faster feeds compared with slower feeds (mean difference £267, 95% CI -6928 to 8117). Fewer infants achieved the principal outcome of survival without moderate to severe neurodevelopmental disability at 24 months in the faster feeds arm (802/1224 vs 848/1246). The stochastic cost-effectiveness analysis showed a likelihood of worse outcomes for faster feeds compared with slower feeds. CONCLUSIONS: The stochastic cost-effectiveness analysis shows faster feeds are broadly equivalent on cost grounds. However, in terms of outcomes at 24 months age (corrected for prematurity), faster feeds are harmful. Faster feeds should not be recommended on either cost or effectiveness grounds to achieve the primary outcome

    Connecting the dots: Potential of data integration to identify regulatory snps in late-onset alzheimer's disease GWAS findings

    Get PDF
    Late-onset Alzheimer's disease (LOAD) is a multifactorial disorder with over twenty loci associated with disease risk. Given the number of genome-wide significant variants that fall outside of coding regions, it is possible that some of these variants alter some function of gene expression rather than tagging coding variants that alter protein structure and/or function. RegulomeDB is a database that annotates regulatory functions of genetic variants. In this study, we utilized RegulomeDB to investigate potential regulatory functions of lead single nucleotide polymorphisms (SNPs) identified in five genome-wide association studies (GWAS) of risk and age-at onset (AAO) of LOAD, as well as SNPs in LD (r2≥0.80) with the lead GWAS SNPs. Of a total 614 SNPs examined, 394 returned RegulomeDB scores of 1-6. Of those 394 variants, 34 showed strong evidence of regulatory function (RegulomeDB score ,3), and only 3 of them were genome-wide significant SNPs (ZCWPW1/ rs1476679, CLU/rs1532278 and ABCA7/rs3764650). This study further supports the assumption that some of the non-coding GWAS SNPs are true associations rather than tagged associations and demonstrates the application of RegulomeDB to GWAS data.©2014 Rosenthal et al

    Antarctic climate, Southern Ocean circulation patterns, and deep water formation during the Eocene

    Get PDF
    We assess early-to-middle Eocene seawater neodymium (Nd) isotope records from seven Southern Ocean deep-sea drill sites to evaluate the role of Southern Ocean circulation in long-term Cenozoic climate change. Our study sites are strategically located on either side of the Tasman Gateway and are positioned at a range of shallow (Nd(t) = −9.3 ± 1.5). IODP Site U1356 off the coast of Adélie Land, a locus of modern-day Antarctic Bottom Water production, is identified as a site of persistent deep water formation from the early Eocene to the Oligocene. East of the Tasman Gateway an additional local source of intermediate/deep water formation is inferred at ODP Site 277 in the SW Pacific Ocean (εNd(t) = −8.7 ± 1.5). Antarctic-proximal shelf sites (ODP Site 1171 and Site U1356) reveal a pronounced erosional event between 49 and 48 Ma, manifested by ~2 εNd unit negative excursions in seawater chemistry toward the composition of bulk sediments at these sites. This erosional event coincides with the termination of peak global warmth following the Early Eocene Climatic Optimum and is associated with documented cooling across the study region and increased export of Antarctic deep waters, highlighting the complexity and importance of Southern Ocean circulation in the greenhouse climate of the Eocene

    The speed of increasing milk feeds: a randomised controlled trial

    Get PDF
    BACKGROUND In the UK, 1-2% of infants are born very preterm (<32 weeks of gestation) or have very low birth weight (<1500 g). Very preterm infants are initially unable to be fed nutritional volumes of milk and therefore require intravenous nutrition. Milk feeding strategies influence several long and short term health outcomes including growth, survival, infection (associated with intravenous nutrition) and necrotising enterocolitis (NEC); with both infection and NEC being key predictive factors of long term disability. Currently there is no consistent strategy for feeding preterm infants across the UK. The SIFT trial will test two speeds of increasing milk feeds with the primary aim of determining effects on survival without moderate or severe neurodevelopmental disability at 24 months of age, corrected for prematurity. The trial will also examine many secondary outcomes including infection, NEC, time taken to reach full feeds and growth. METHODS/DESIGN Two thousand eight hundred very preterm or very low birth weight infants will be recruited from approximately 30 hospitals across the UK to a randomised controlled trial. Infants with severe congenital anomaly or no realistic chance of survival will be excluded. Infants will be randomly allocated to either a faster (30 ml/kg/day) or slower (18 ml/kg/day) rate of increase in milk feeds. Data will be collected during the neonatal hospital stay on weight, infection rates, episodes of NEC, length of stay and time to reach full milk feeds. Long term health outcomes comprising vision, hearing, motor and cognitive impairment will be assessed at 24 months of age (corrected for prematurity) using a parent report questionnaire. DISCUSSION Extensive searches have found no active or proposed studies investigating the rate of increasing milk feeds. The results of this trial will have importance for optimising incremental milk feeding for very preterm and/or very low birth weight infants. No additional resources will be required to implement an optimal feeding strategy, and therefore if successful, the trial results could rapidly be adopted across the NHS at low cost. TRIAL REGISTRATION ISRCTN Registry; ISRCTN76463425 on 5 March, 2013

    A candidate regulatory variant at the TREM gene cluster associates with decreased Alzheimer's disease risk and increased TREML1 and TREM2 brain gene expression

    Get PDF
    Introduction: We hypothesized that common Alzheimer's disease (AD)-associated variants within the triggering receptor expressed on myeloid (TREM) gene cluster influence disease through gene expression. Methods: Expression microarrays on temporal cortex and cerebellum from ∼400 neuropathologically diagnosed subjects and two independent RNAseq replication cohorts were used for expression quantitative trait locus analysis. Results: A variant within a DNase hypersensitive site 5′ of TREM2, rs9357347-C, associates with reduced AD risk and increased TREML1 and TREM2 levels (uncorrected P = 6.3 × 10−3 and 4.6 × 10−2, respectively). Meta-analysis on expression quantitative trait locus results from three independent data sets (n = 1006) confirmed these associations (uncorrected P = 3.4 × 10−2 and 3.5 × 10−3, Bonferroni-corrected P = 6.7 × 10−2 and 7.1 × 10−3, respectively). Discussion: Our findings point to rs9357347 as a functional regulatory variant that contributes to a protective effect observed at the TREM locus in the International Genomics of Alzheimer's Project genome-wide association study meta-analysis and suggest concomitant increase in TREML1 and TREM2 brain levels as a potential mechanism for protection from AD

    Identification of Candidate Growth Promoting Genes in Ovarian Cancer through Integrated Copy Number and Expression Analysis

    Get PDF
    Ovarian cancer is a disease characterised by complex genomic rearrangements but the majority of the genes that are the target of these alterations remain unidentified. Cataloguing these target genes will provide useful insights into the disease etiology and may provide an opportunity to develop novel diagnostic and therapeutic interventions. High resolution genome wide copy number and matching expression data from 68 primary epithelial ovarian carcinomas of various histotypes was integrated to identify genes in regions of most frequent amplification with the strongest correlation with expression and copy number. Regions on chromosomes 3, 7, 8, and 20 were most frequently increased in copy number (>40% of samples). Within these regions, 703/1370 (51%) unique gene expression probesets were differentially expressed when samples with gain were compared to samples without gain. 30% of these differentially expressed probesets also showed a strong positive correlation (r≥0.6) between expression and copy number. We also identified 21 regions of high amplitude copy number gain, in which 32 known protein coding genes showed a strong positive correlation between expression and copy number. Overall, our data validates previously known ovarian cancer genes, such as ERBB2, and also identified novel potential drivers such as MYNN, PUF60 and TPX2

    Copy Number Analysis Identifies Novel Interactions Between Genomic Loci in Ovarian Cancer

    Get PDF
    Ovarian cancer is a heterogeneous disease displaying complex genomic alterations, and consequently, it has been difficult to determine the most relevant copy number alterations with the scale of studies to date. We obtained genome-wide copy number alteration (CNA) data from four different SNP array platforms, with a final data set of 398 ovarian tumours, mostly of the serous histological subtype. Frequent CNA aberrations targeted many thousands of genes. However, high-level amplicons and homozygous deletions enabled filtering of this list to the most relevant. The large data set enabled refinement of minimal regions and identification of rare amplicons such as at 1p34 and 20q11. We performed a novel co-occurrence analysis to assess cooperation and exclusivity of CNAs and analysed their relationship to patient outcome. Positive associations were identified between gains on 19 and 20q, gain of 20q and loss of X, and between several regions of loss, particularly 17q. We found weak correlations of CNA at genomic loci such as 19q12 with clinical outcome. We also assessed genomic instability measures and found a correlation of the number of higher amplitude gains with poorer overall survival. By assembling the largest collection of ovarian copy number data to date, we have been able to identify the most frequent aberrations and their interactions

    A global perspective on the trophic geography of sharks

    Get PDF
    Sharks are a diverse group of mobile predators that forage across varied spatial scales and have the potential to influence food web dynamics. The ecological consequences of recent declines in shark biomass may extend across broader geographic ranges if shark taxa display common behavioural traits. By tracking the original site of photosynthetic fixation of carbon atoms that were ultimately assimilated into muscle tissues of 5,394 sharks from 114 species, we identify globally consistent biogeographic traits in trophic interactions between sharks found in different habitats. We show that populations of shelf-dwelling sharks derive a substantial proportion of their carbon from regional pelagic sources, but contain individuals that forage within additional isotopically diverse local food webs, such as those supported by terrestrial plant sources, benthic production and macrophytes. In contrast, oceanic sharks seem to use carbon derived from between 30° and 50° of latitude. Global-scale compilations of stable isotope data combined with biogeochemical modelling generate hypotheses regarding animal behaviours that can be tested with other methodological approaches.This research was conducted as part of C.S.B.’s Ph.D dissertation, which was funded by the University of Southampton and NERC (NE/L50161X/1), and through a NERC Grant-in-Kind from the Life Sciences Mass Spectrometry Facility (LSMSF; EK267-03/16). We thank A. Bates, D. Sims, F. Neat, R. McGill and J. Newton for their analytical contributions and comments on the manuscripts.Peer reviewe
    corecore